The involvement of model-based but not model-free learning signals during observational reward learning in the absence of choice.

نویسندگان

  • Simon Dunne
  • Arun D'Souza
  • John P O'Doherty
چکیده

A major open question is whether computational strategies thought to be used during experiential learning, specifically model-based and model-free reinforcement learning, also support observational learning. Furthermore, the question of how observational learning occurs when observers must learn about the value of options from observing outcomes in the absence of choice has not been addressed. In the present study we used a multi-armed bandit task that encouraged human participants to employ both experiential and observational learning while they underwent functional magnetic resonance imaging (fMRI). We found evidence for the presence of model-based learning signals during both observational and experiential learning in the intraparietal sulcus. However, unlike during experiential learning, model-free learning signals in the ventral striatum were not detectable during this form of observational learning. These results provide insight into the flexibility of the model-based learning system, implicating this system in learning during observation as well as from direct experience, and further suggest that the model-free reinforcement learning system may be less flexible with regard to its involvement in observational learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

Merging two variables (observational learning and self-talk), is not preference one variable evermore

Observing a model let learners to make a plan of action that can be used for learning motor skills. Moreover, self-talk is a conversation that performers use it either apparently or secretly in order to think about their performance and reinforce it. Therefore, the purpose   of this study was to investigate the effect of observational learning, self-talk and combination of both on boy’s perform...

متن کامل

An Analysis of Families and Community’s Involvement in The Schools’ Educational and Administrative Processes Using “Overlapping Spheres of Influence” Model

Abstract The overall purpose of this research was to analyze the Families and Community’s involvement in the educational and managerial processes of schools using The “Overlapping Spheres of Influence” Theoretical Model. The research method was an explanatory (quantitative - qualitative) combination. The statistical population consisted of all teachers, administrators and parents of elementary...

متن کامل

An Analysis of Families and Community’s Involvement in The Schools’ Educational and Administrative Processes Using “Overlapping Spheres of Influence” Model

Abstract The overall purpose of this research was to analyze the Families and Community’s involvement in the educational and managerial processes of schools using The “Overlapping Spheres of Influence” Theoretical Model. The research method was an explanatory (quantitative - qualitative) combination. The statistical population consisted of all teachers, administrators and parents of elementary...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 6  شماره 

صفحات  -

تاریخ انتشار 2016